CONVEX SOLUTIONS OF THE POLYNOMIAL-LIKE ITERATIVE EQUATION ON OPEN SET
نویسندگان
چکیده
منابع مشابه
Polynomial and non-polynomial solutions set for wave equation with using Lie point symmetries
This paper obtains the exact solutions of the wave equation as a second-order partial differential equation (PDE). We are going to calculate polynomial and non-polynomial exact solutions by using Lie point symmetry. We demonstrate the generation of such polynomial through the medium of the group theoretical properties of the equation. A generalized procedure for polynomial solution is pr...
متن کاملpolynomial and non-polynomial solutions set for wave equation with using lie point symmetries
this paper obtains the exact solutions of the wave equation as a second-order partial differential equation (pde). we are going to calculate polynomial and non-polynomial exact solutions by using lie point symmetry. we demonstrate the generation of such polynomial through the medium of the group theoretical properties of the equation. a generalized procedure for polynomial solution is pr...
متن کاملOn the Polynomial Solutions of the Generalized Lame Differential Equation
According to Heine (see Marden [l, §9], or Marden [2]),1 there exist some choices F(z) of the polynomial R(z) corresponding to each of which equation (1.1) has a polynomial solution S(z). The 5(z) were called Stieltjes polynomials by Van Vleck in honor of the man who first studied the location of their zeros relative to those of P(z). For a similar reason, we shall call the F(z) Van Vleck polyn...
متن کاملPolynomial Solutions of the Heun Equation
We review properties of certain types of polynomial solutions of the Heun equation. Two aspects are particularly concerned, the interlacing property of spectral and Stieltjes polynomials in the case of real roots of these polynomials and asymptotic root distribution when complex roots are present.
متن کاملIterative solutions to the linear matrix equation
In this paper the gradient based iterative algorithm is presented to solve the linear matrix equation AXB +CXD = E, where X is unknown matrix, A,B,C,D,E are the given constant matrices. It is proved that if the equation has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. Two numerical examples show that the introduced iterative a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Korean Mathematical Society
سال: 2014
ISSN: 1015-8634
DOI: 10.4134/bkms.2014.51.3.641